Chaos and frequent hypercyclicity for weighted shifts

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypercyclicity Criterion of Multiple Weighted Composition Operators

In this paper we give some sufficient conditions for the adjoint of the multiple weighted composition operators acting on some function spaces satisfying the Hypercyclicity Criterion. Mathematics Subject Classification: 47B37; 47B33

متن کامل

Time shifts and correlations in synchronized chaos.

We introduce a new method for predicting characteristics of the synchronized state achieved by a wide class of unidirectional coupling schemes. Specifically, we derive a transfer function from the coupling model that provides estimates of the correlation between the drive and response waveforms, and of the time shift (i.e., lag or anticipation) of the synchronized state. To demonstrate the meth...

متن کامل

Von Neumann’s Inequality for Commuting Weighted Shifts

We show that every multivariable contractive weighted shift dilates to a tuple of commuting unitaries, and hence satisfies von Neumann’s inequality. This answers a question of Lubin and Shields. We also exhibit a closely related 3-tuple of commuting contractions, similar to Parrott’s example, which does not dilate to a 3-tuple of commuting unitaries.

متن کامل

Some necessary and sufficient conditions for Hypercyclicity

We give necessary and sufficient conditions for an operator on a separable Hilbert space to satisfy the hypercyclicity criterion.

متن کامل

On Polynomially Bounded Weighted Shifts

(1) ‖p(T )‖ ≤M sup{|p(ζ)| : |ζ| = 1} ∀ polynomial p, and to be power bounded (notation T ∈ (PW)) if (1) holds for every polynomial of the special form p(ζ) = ζ where n is a positive integer. If T ∈ (PB) [resp., T ∈ (PW)], then there is a smallest number M which satisfies (1) [resp., (1) restricted]. This number will be called the polynomial bound of T [resp., the power bound of T ] and denoted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2020

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2020.122